Wystarczy kilka podstawowych związków chemicznych występujących na Ziemi od miliardów lat oraz niewielka liczba reakcji, by dać podwaliny życiu. Polscy naukowcy opracowali "drzewo początków życia", czyli zbiór reakcji chemicznych, które brały udział w powstaniu życia na naszej planecie.
Miliardy lat temu, zanim na Ziemi pojawili się pierwsi mieszkańcy, obecne były na niej tylko proste związki chemiczne, takie jak woda, azot, metan. Laikowi może się nie mieścić w głowie, jak z takich prostych składników mogło się wyłonić życie. Naukowcy od dekad starają się jednak pokazać, że jest to możliwe, że małymi krokami z prostych składników zaczęły powstawać coraz bardziej skomplikowane związki, a w konsekwencji - życie.
Program Allchemy
Polscy naukowcy spróbowali usystematyzować wiedzę dotyczącą możliwości chemicznej ewolucji życia. Prześledzili, jakie związki chemiczne mogły rzeczywiście powstawać z kilku składników, które najprawdopodobniej były obecne na naszej planecie. Publikacja polskiego zespołu na ten temat ukazała się w prestiżowym piśmie "Science".
Już kilka lat temu badacze z zespołu profesora Bartosza Grzybowskiego (z Instytutu Chemii Organicznej Polskiej Akademii Nauk i Uniwersytetu UNIST w Korei Płd.) i doktor Sary Szymkuć opracowali program Allchemy. Pozwala on symulować reakcje chemiczne zachodzące w określonych warunkach pomiędzy zadanymi związkami chemicznymi. Aby przygotować program Allchemy, trzeba było wykorzystać zaawansowaną wiedzę chemiczną, użyć olbrzymich baz danych i wykorzystać możliwości sztucznej inteligencji.
- Tym razem zaprzęgliśmy komputer do tego, by pomógł nam zrozumieć, jak powstały cząsteczki ważne dla życia - podsumowuje badania w "Science" współkierująca zespołem doktor Sara Szymkuć.
Wystarczy kilka reakcji
Naukowcy wzięli na warsztat sześć związków chemicznych: wodę, cząsteczkę azotu, metan, siarkowodór, amoniak i cyjanowodór. Jakie związki mogą z nich powstać, gdy pozwolimy im reagować ze sobą we wszystkich możliwych kombinacjach? Okazało się, że wystarczy dosłownie kilka kolejnych kroków reakcji, aby wśród produktów zaczęły się pojawiać aminokwasy (składniki białek), zasady azotowe (składniki DNA), lipidy czy enzymy. Komputerowe symulacje pokazały też, że już tych kilka kroków wystarczy, by zaczęły się pojawiać związki, które... powielają same siebie.
I tak np. naukowcy pokazują, że jedna reakcja chemiczna wystarczy, by z tych sześciu początkowych związków powstało kolejnych 12. Jeśli teraz pozwoli się reagować dalej tym wszystkim dostępnym wtedy 18 związkom - może powstać 20 kolejnych związków chemicznych. W następnym kroku pojawi się 60 nowych związków, a później - aż 300. Po piątym kroku reakcji dochodzi do zaskakująco bogatej bazy 1500 nowych substancji. Co ciekawe, tylko dwie reakcje chemiczne wystarczą, by powstał pierwszy aminokwas - glicyna. A jeśli pozwolić na pięć kroków reakcji, powstanie już 27 związków chemicznych, charakterystycznych dla życia (wśród nich choćby uracyl, zasada azotowa wchodząca w skład RNA).
"Drzewo początków życia"
Przygotowanie takiego kompletnego, chemicznego "drzewa początków życia" i operowanie na tak ogromnej liczbie związków chemicznych wykracza poza możliwości pojedynczych chemików. Komputer jednak świetnie sobie daje radę z symulowaniem tych reakcji. Znajduje kolejne ścieżki reakcji, z których istnienia chemicy nie zdawali sobie sprawy, a które mogą prowadzić do powstawania aminokwasów, enzymów, lipidów... Niektóre z takich nieznanych wcześniej - ale zaproponowanych przez komputer reakcji - naukowcy potwierdzili eksperymentalnie, pokazując zarazem, że ich program może być cennym narzędziem dla chemików.
Polacy udostępniają moduł Allchemy obejmujący reakcje, jakie mogły zachodzić miliardy lat temu na Ziemi. - Naukowcy mogą się tym narzędziem pobawić i sprawdzić swoje hipotezy dotyczące początków życia - zachęca dr Szymkuć.
Dzięki programowi Allchemy w jednym miejscu zgromadzone są wszystkie cząsteczki, które mogły powstać na prebiotycznej Ziemi. Można sprawdzić, co odróżnia cząsteczki wybrane przez życie od tych wszystkich pozostałych, których jest zdecydowanie więcej.
Profesor Bartosz Grzybowski podsumowuje cechy najprostszych cząsteczek, z których korzysta życie. Są one: rozpuszczalne w wodzie (bo życie powstawało w wodzie), stabilne termodynamicznie (nie zmieniają się w czasie), do ich produkcji nie potrzeba wyraźnych zmian warunków reakcji (łatwiej mogły więc powstawać), a także mają zbalansowane akceptory i donory wiązań wodorowych (dzięki temu mają większą możliwość łączenia się wiązaniami wodorowymi w agregaty - jak w przypadku białek czy kwasów nukleinowych). - Jest w tym regularność. Nie jest więc przypadkiem, co zostało wybrane w procesie chemicznej ewolucji życia - ocenia prof. Grzybowski.
Pomogą w kolejnych badaniach
Badacz zwraca uwagę, że na "chemicznym drzewie początków życia" dość szybko pojawiają się cząsteczki, które są katalizatorami - ułatwiają zachodzenie kolejnych, zupełnie nowych typów reakcji. - To drzewo z każdym krokiem ma więc coraz więcej gałęzi. Ono samo napędza swój wzrost - mówi.
Dodaje, że kiedy "rozpisze się" to całe drzewo, to w gąszczu reakcji komputer może wyłapać pierwsze autokatalityczne cykle reakcji, tzn. cykle, które prowadzą do skopiowania wyjściowej substancji, namnożenia jej. A więc już na bardzo wczesnym etapie mogło pojawić się zjawisko samoreplikacji, tak charakterystyczne dla życia. W publikacji w "Science" badacze udowodnili działanie jednego z takich cykli w probówce. Aby życie mogło powstać, musiały też w pewnym momencie powstawać pęcherzyki, proste organelle. A do tego potrzebne są surfaktanty tworzące tzw. micele, komponenty błony komórkowej. - Też pokazaliśmy, jak można je zrobić z prebiotycznych składników - zauważa prof. Grzybowski.
- To, jakie reakcje mogły zachodzić na Ziemi przed nastaniem życia, projektował komputer i to jego wskazania powiedziały nam, które syntezy wykonać w laboratorium i jak to zrobić. Daje nam to kolejne potwierdzenie, że maszyny stają się coraz bardziej przydatnym narzędziem w badaniach dotyczących syntezy chemicznej - podsumowuje dr Szymkuć. A prof. Grzybowski zapowiada, że jego zespół wykorzystuje program Allchemy również do prac nad szukaniem nowych leków i ich syntezą.
Autor: dd/map / Źródło: PAP
Źródło zdjęcia głównego: Pixabay License